1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217 | /* ============================================================
*
* This file is a part of digiKam
*
* Date : 2020-05-22
* Description : Wrapper of face recognition using OpenFace.
*
* SPDX-FileCopyrightText: 2019 by Thanh Trung Dinh <dinhthanhtrung1996 at gmail dot com>
* SPDX-FileCopyrightText: 2020-2025 by Gilles Caulier <caulier dot gilles at gmail dot com>
* SPDX-FileCopyrightText: 2020 by Nghia Duong <minhnghiaduong997 at gmail dot com>
* SPDX-FileCopyrightText: 2024-2025 by Michael Miller <michael underscore miller at msn dot com>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* ============================================================ */
#include "opencvdnnfacerecognizer_p.h"
namespace Digikam
{
OpenCVDNNFaceRecognizer::Private* OpenCVDNNFaceRecognizer::d = nullptr;
OpenCVDNNFaceRecognizer::OpenCVDNNFaceRecognizer(Classifier method, FaceScanSettings::FaceRecognitionModel recModel)
{
if (!d)
{
d = new Private(method, recModel);
}
else
{
++(d->ref);
}
}
OpenCVDNNFaceRecognizer::~OpenCVDNNFaceRecognizer()
{
--(d->ref);
if (0 == d->ref)
{
delete d;
d = nullptr;
}
}
void OpenCVDNNFaceRecognizer::setNbNeighbors(int k)
{
d->kNeighbors = k;
}
void OpenCVDNNFaceRecognizer::setThreshold(int threshold)
{
d->uiThreshold = threshold;
}
cv::Mat OpenCVDNNFaceRecognizer::prepareForRecognition(QImage& inputImage)
{
cv::Mat cvImage; // = cv::Mat(image.height(), image.width(), CV_8UC3);
cv::Mat cvImageWrapper;
if (inputImage.format() != QImage::Format_ARGB32_Premultiplied)
{
inputImage = inputImage.convertToFormat(QImage::Format_ARGB32_Premultiplied);
}
cvImageWrapper = cv::Mat(inputImage.height(), inputImage.width(), CV_8UC4, inputImage.scanLine(0), inputImage.bytesPerLine());
cv::cvtColor(cvImageWrapper, cvImage, CV_RGBA2RGB);
/*
resize(cvImage, cvImage, Size(256, 256), (0, 0), (0, 0), cv::INTER_LINEAR);
equalizeHist(cvImage, cvImage);
*/
return cvImage;
}
cv::Mat OpenCVDNNFaceRecognizer::prepareForRecognition(const cv::Mat& cvInputImage)
{
int TargetInputSize = 256;
cv::Mat cvOutputImage;
cv::resize(cvInputImage, cvOutputImage, cv::Size(TargetInputSize, TargetInputSize));
return cvOutputImage;
}
void OpenCVDNNFaceRecognizer::train(const QList<QPair<QImage*,
QString> >& images,
const int label)
{
cv::parallel_for_(cv::Range(0, images.size()), Private::ParallelTrainer(d, images, label));
d->newDataAdded = true;
}
bool OpenCVDNNFaceRecognizer::remove(const QString& hash)
{
bool result = FaceDbAccess().db()->removeFaceVector(hash);
if (result)
{
// rebuild the tree
if (d->tree)
{
delete d->tree;
d->tree = nullptr; // safety in case reconstructTree fails
}
d->tree = FaceDbAccess().db()->reconstructTree(d->recognizeModel);
}
return result;
}
int OpenCVDNNFaceRecognizer::recognize(const QPair<QImage*, QString>& inputImage)
{
int id = -1;
cv::Mat faceEmbedding = d->extractors[0]->getFaceEmbedding(prepareForRecognition(*(inputImage.first)));
switch (d->method)
{
case SVM:
{
id = d->predictSVM(faceEmbedding);
break;
}
case OpenCV_KNN:
{
id = d->predictKNN(faceEmbedding);
break;
}
case Tree:
{
id = d->predictKDTree(faceEmbedding);
break;
}
case DB:
{
id = d->predictDb(faceEmbedding);
break;
}
default:
{
qCWarning(DIGIKAM_FACEDB_LOG) << "Not recognized classifying method";
}
}
return id;
}
QVector<int> OpenCVDNNFaceRecognizer::recognize(const QList<QPair<QImage*, QString> >& inputImages)
{
QVector<int> ids;
cv::parallel_for_(cv::Range(0, inputImages.size()), Private::ParallelRecognizer(d, inputImages, ids));
return ids;
}
void OpenCVDNNFaceRecognizer::clearTraining(const QList<int>& idsToClear)
{
if (idsToClear.isEmpty())
{
FaceDbAccess().db()->clearDNNTraining();
}
else
{
FaceDbAccess().db()->clearDNNTraining(idsToClear);
}
/*
FaceDbAccess().db()->clearTreeDb();
*/
}
bool OpenCVDNNFaceRecognizer::registerTrainingData(const cv::Mat& preprocessedImage, int label)
{
cv::Mat faceEmbedding = d->extractors[0]->getFaceEmbedding(preprocessedImage);
if (d->method == Tree)
{
KDNodeBase* const newNode = d->tree->add(faceEmbedding, label);<--- Variable 'newNode' can be declared as pointer to const
if (!newNode)
{
qCWarning(DIGIKAM_FACEDB_LOG) << "Error insert new node";
return false;
}
}
return true;
}
int OpenCVDNNFaceRecognizer::verifyTestData(const cv::Mat& preprocessedImage)
{
int id = -1;
if (d->method == Tree)
{
id = d->predictKDTree(d->extractors[0]->getFaceEmbedding(preprocessedImage));
}
return id;
}
} // namespace Digikam
|